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ABSTRACT
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Abstract : A realtime monocular (single camera) visual Simultaneous
Localization And Mapping (SLAM) robot is built utilizing
a server-node based computational approach. The core of
the robot is a Raspberry Pi 2 with a Robot Operating Sys-
tem (ROS) wrapper over the Raspbian Wheezy Linux ker-
nel. Different nodes from the robot communicate with the
server to map its location based on its surroundings using
ORB-SLAM, with loop detection and re-localization capa-
bilities.



EXECUTIVE SUMMARY

The Simultaneous Localization and Mapping (SLAM) problem is concerned
with building an intelligent robot that can identify its position when kept
at an unknown location and in an unknown environment, while incremen-
tally building a map of the environment it is placed in. SLAM has been
formulated and solved by the Robotics community and several algorithms
(for example, self-driving cars) already exist. However, the cost of sensors
involved and computational intensity of the algorithms are pretty high.

The aim of this project is to build a self-aware, mobile 3D-motion and depth
sensing robot using the Raspberry Pi Hardware platform. With the ad-
vent of cloud computing, the barriers of high-performance computing have
been greatly reduced. Utilizing this ability to offload signal processing, the
project intends to produce a single robot implementation with minimal cost
on the bill of materials and computational cost. This requires using an ar-
chitecture which can effectively decouple the robot from the server with
minimal effect on the robot’s processing capability.

We have demonstrated an affordable implementation platform using low-
cost computational hardware and open-source algorithms. Utilizing the
wrappers offered by Robot Operating System [ROS] a server-node based
model, utilizing a linux-based laptop as a server and a Raspberry-Pi based
robot as the client, has been successfully built. A real-time monocular Vi-
sual SLAM system on the above described architecture has been success-
fully demonstrated and results compared.
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Chapter 1

Introduction

Perception is an important attribute for building any sort of intelligent
robot. This aspect is required in a range of robots starting from simple
automated vaccum-cleaning robots, self-driving cars to rovers that per-
form deep space exploration. The perception task can be split primarily
into two problems: knowing the environment - area mapping and know-
ing where the robot is present in the environment - robot localization. To
solve the localization problem using any form of on-board sensors a map
must be available in the robot from which it can locate it’s relative posi-
tion. However, in order to be able to map the surrounding the robot must
know its current relative position. This fundamental Simultaneous Local-
isation And Mapping (SLAM) problem has been at the center of decades
of robotics research.

Since its introduction in the nineties, Internet has slowly been seeping into
everyday life to the point where it is almost taken for granted today. With
this increase in connectivity, several core assumptions that formed the pil-
lars of robot-building need to be rethought. When a robot can transmit and
receive data at a sufficient rate from a more powerful computing platform,
do we really need to have the intelligence to process the data in the robot
itself. Several tools have exploited this new paradigm of robot program-
ming. These tools utilize a server and node based programming approach
with multiple independent nodes communicating to each other and the
server.
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INTRODUCTION

A prominent tool among these being Robot Operating System (ROS), main-
tained by the Open Source Robotics Foundation. ROS (Robot Operating
System) provides libraries and tools to help software developers create
robot applications. It provides hardware abstraction, device drivers, li-
braries, visualizers, message-passing, package management, and more. ROS
is licensed under an open source, BSD license.

The Raspberry Pi Foundation, established in 2008 as a UK-based charity
through their trading subsidiary, Raspberry Pi Trading Limited, invents
and sells low-cost, high-performance computers. Since launching their first
product in February 2012, they have sold eight million Raspberry Pi com-
puters and have helped to establish a global community of digital makers
and educators.

The Raspberry Pi 2 Model B is the second generation Raspberry Pi. It re-
placed the original Raspberry Pi 1 Model B+ in February 2015. Running a
900MHz quad-core ARM Cortex-A7 CPU with 1GB RAM, it boasts of sev-
eral features like 40 GPIO pins, Camera interface (CSI) etc. Since, it has
an ARMv7 processor, it can run the full range of ARM GNU/Linux dis-
tributions. With an open-design, popularity among hobbyists, backed by
a education charity it offers an ideal product to base a low-cost hardware
platform on.

Through the course of the following chapters, the design decisions and im-
plementations of an attempt to build a low-cost distributed SLAM robotics
platform are presented.
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Chapter 2

Design Problem

A rigid body in a 3-dimensional space generally has six degrees of freedom
- namely three rotational ( commonly called pitch, roll & yaw ) and three
translational ( commonly refered by x, y & z axes). This combination of the
position and orientation of the body is commonly referred to as the pose.

The concept of State Estimation from sensor data forms the cornerstone
of modern day probabilistic robotics. At a surface level, the assumption
that the differential displacement can be obtained by double integrating the
acceleration values (acquired from an acclerometer or gyroscope - called
odometry data) seems straightforward. However, this leaves the critical
problem of estimating the right value of the integration constant. The inte-
gration constant c is a random value that is distributed in a bayessian normal
distribution. The problem of simultaneous Localization and Mapping was
first introduced and solved in a seminal paper by Smith, Self and Cheese-
man. [1]

Using filters called Kalman Filters, these values can be estimated to obtain a
more accurate value of the pose. A more computationally efficient version
of this was built and called Extended Kalam Filters. This was first developed
into a system by Moutarlier and Chatila [2]. The Extended Kalman Filter is
used to estimate the state (position) of the robot from odometry data and
landmark observations.

10



2.1. SIMULTANEOUS LOCALIZATION AND MAPPING PROBLEM DESIGN PROBLEM

2.1 Simultaneous Localization and Mapping Problem

SLAM is essentially a process used to describe the surroundings at a given
location without any priori knowledge of the location. We typically esti-
mate the trajectory of the bot as well as map the relative location of sur-
roundings objects (landmarks). The robot tends to produce errors on its
own location and the location of landmarks. However, the relative distance
between the landmarks are recorded accurately and are constantly updated
as the bot traverses. Based on the relative locations of the landmarks, the
trajectory and location of the bot is also updated over time.

Consider a robot moving in an unknown environment [3] as depicted in
Fig. 2.1 with
xk : The state vector describing the location and orientation of the vehicle.
uk : The control vector, applied at time k − 1 to drive the vehicle to a state

xk at time k.
mi : The vector describing the location of the ith landmark which is time

invariant.
zik : An observation taken from the robot of the location of the ith landmark

at time k.

The following sets are also defined:
X0:k = x0, x1, . . . , xk = X0:k−1, xk : History of robot locations.
U0:k = u1, u2, . . . , uk = U0:k−1, uk : History of control inputs.
m = m1,m2, . . . ,mn : Set of all landmarks.
Z0:k = z1, z2, . . . , zk = Z0:k−1, zk : Set of all landmark observations.

The observation model describes the probability of making an observation
zk when the robot location and landmark locations are known, and is gen-
erally described in the form

P (zk|xk,m) (2.1)

Once the robot location and map are defined, observations are condition-
ally independent given the map and the current vehicle state. The motion
model for the robot can be described in terms of a probability distribution
on state transitions in the form

P (xk|xk−1, uk) (2.2)
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2.1. SIMULTANEOUS LOCALIZATION AND MAPPING PROBLEM DESIGN PROBLEM

Figure 2.1: A Robot in an unknown environment

The SLAM algorithm is implemented using a two step recursive prediction
(time-update) correction (measurement-update) form:

Time-Update

P (xk,m|Z0:k−1, U0:k, x0) =

∫
P (xk|xk−1, uk)× P (xk−1,m|Z0:k−1, U0:k−1, x0)dxk−1

(2.3)

Measurement-Update

P (xk,m|Z0:k, U0:k, x0) =
P (zk|xk,m)P (xk,m|Z0:k−1, U0:k, x0)

P (zk|Z0:k−1, U0:k)
(2.4)

The implementation is based on the assumption that the location of the
robot is deterministic at every point. Based on the location, a map is con-
structed by combining its observations from the surroundings. Conversely,
it may be such that the landmark locations are known and the location of
the bot has to be computed relative to these locations.
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2.2. PROBLEM STATEMENT DESIGN PROBLEM

2.2 Problem Statement

The main objective is to build a system to achieve real-time SLAM with
minimal cost.

It can be divided into the following components :

1. Perform an accurate pose estimation of the robot

2. Offload processing to the server

3. Develop a local map that is capable of reacting to loop closure

4. Keep the overall cost less than $ 100

5. Minimize the computational load on the robot as much as possible

13



Chapter 3

Related Work

Today, when one looks at the developments that have occured in different
fields, Computer Vision is one among the disciplines where a lot of devel-
opment has occured. Several advanced algorithms have been developed to
extract meaningful data from image data. The field of using visual data to
perform SLAM is called Visual SLAM.

The objective of Visual SLAM algorithms is to estimate the pose of the cam-
era which is moving and map the geometric structure and appearance of
the environment the camera is moving in. The most vital problem in Visual
SLAM is obtaining correspondence throughout the image stream. This re-
sults in them having a bad response when there are abrupt changes in the
motion of the camera. Modern Visual SLAM algorithms obtain this corre-
spondence throughout the images captured using Sparse feature matching
techniques and construct maps using a composition of simple geometric
constructs like points. The resulting map provides a sparsely furnished,
incomplete representation of the environs.

The computer vision research tries to understand a very challenging prob-
lem of trying to invert the image formation process that occurs when a real
3D-scene is projected into the lens of camera to create its projected 2D im-
age. Several decades of computer vision research has gone in to try and un-
derstand how to recover the structure of the original 3D-scene given only
the 2D-passive images.

14



3.1. FEATURE DESCRIPTORS AND DETECTORS RELATED WORK

Going back to the problem of reconstructing the 3D-structure from 2D-
images, the first step would be to obtain a reliable method of detecting
features. Such methods to extract distinctive invariant features from im-
ages, are loosely described together as Feature descriptors.

3.1 Feature Descriptors and Detectors

Any Visual SLAM algorithm requires a feature descriptor to describe the
feature and a feature detector to detect the features. In almost all Visual
SLAM algorithms, corners are typically detected and matched into a database.
Corners are points that have a different dimension that may arise as the re-
sult of geometric discontinuities, such as the corners of real world objects,
or from small patches of texture changes.

3.1.1 Harris Corner Detector

The most widely used detector is the Harris corner detector , proposed in
1988 [4]. This was a combined corner and edge detector based on local
auto-correlation function. However, Harris corners are not scale-invariant.

3.1.2 SIFT

In 2004, a now popular descriptor called SIFT (Scale Invariant Feature Trans-
form) [5] was introduced. This computes a histogram of local oriented gra-
dients around the interest point and stores the bins in a 28-dimensional
vector (8 orientation bins for each of the 4 x 4 location bins). Relatively
fast and reliable, the SIFT descriptor is widely used. However, it imposes a
large computational burden, especially for real-time systems such as visual
odometry.

3.1.3 SURF

Less computationally intensive algorithms were being researched as a re-
placement for SIFT. In 2006, a new descriptor called SURF (Speeded-Up
Robust Features) [6], based on the Hessian matrix was introduced.

15



3.1. FEATURE DESCRIPTORS AND DETECTORS RELATED WORK

Relying on integral images for image convolution, the SURF operator out-
performed SIFT in most tests. The SIFT descriptor was a 128 - vector and
therefore was relatively slow to compute and match. While SURF addressed
the issue of speed, its descriptor was a 64-vector of floating points values
requiring 256 bytes. This caused memory issues when million of descrip-
tors had to be stored.

3.1.4 BRIEF

In 2010, a new feature descriptor called BRIEF (Binary Robust Independent
Elementary Features) [7] was developed. This used binary strings as a fea-
ture point descriptor. It offered the advantage of being small in size and
being highly discriminative. Moreover, the similarity tests could be done
by simple evaluation of Hamming distance, instead of the usual l-2 norm.
BRIEF performed a relatively small number of intensity difference tests to
represent an image patch as a binary string.

However, BRIEF was not designed to be rotationally invariant.

3.1.5 FAST

FAST is a keypoint detector. The intensity threshold between the center
pixel and those in a circular ring of distance ( eg. in FAST9 - the value of
pixels at a distance of 9 pixels about the center) is calculated.

3.1.6 ORB

In 2011, another descriptor based on the FAST keypoint detector and the
BRIEF descriptor called ORB (Oriented FAST and Rotated BRIEF) was de-
veloped [8]. This used a modified BRIEF descriptor called rBRIEF and a
oriented FAST detector.

The authors

1. Added a orientation component to FAST.

2. Computated oriented BRIEF features.

3. Analysed the variance and correlation of oriented BRIEF features.

16



3.1. FEATURE DESCRIPTORS AND DETECTORS RELATED WORK

4. Implemented a learning method for de-correlating BRIEF features
under rotational invariance, leading to better performance in nearest-
neighbor applications.

The authors also contributed a BSD licensed implementation of ORB to the
community, via OpenCV 2.3.

3.1.7 Keyframes

Monocular SLAM was initially performed by filtering all the frames to
jointly estimate the map and camera position. However, this wastes a lot
of computational effort on processing consecutive frames with no new in-
formation. Selecting certain frames (keyframes) and peforming costly but
more accurate bundle adjustment operations produces better results. This
way the mapping is also not related to the frame rate. [9]

3.1.8 Bundle Adjustment

Bundle adjustment refers to methods that are used for refining a visual re-
construction to produce jointly optimal 3D structure and viewing parame-
ter (camera pose and/or calibration) estimates. [10]

3.1.9 Bag of Words

Loop closure refers to the detecting that the current path has already been
visited and cognizantly updating the map with the correctly associated
data information to build consistent maps. While for small environments,
map-to-image methods achieve nice performance, for large environments,
image-to-image (or appearance-based) methods scale better. Discrete bag
of words technique builds a database from the frames collected by the robot
so that the most similar one can be retrieved when a new frame is cap-
tured. If they are similar enough, a loop closure is detected. In this work
[11], a bag of words was shown to be used to discretize a binary space,
and augment it with a direct index, in addition to the usual inverse index.
This allowed for faster retrieval of images and efficiently obtain point cor-
respondences between images.
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3.2. ORBSLAM RELATED WORK

3.2 ORBSLAM

ORBSLAM is a SLAM algorithm implementation developed by Raul Mur
et. al [12] at the University of Zaragoza. The system utilizes ORB descrip-
tors and has several novel features, including

• Uses the same ORB features for all tasks

• real-time loop closing based on optimization of the pose graph

• recovery from tracking failure

• automatic map initialization procedure

• survial of fittest approach to map point and key frame selection

The system works in three parallel threads which are described below:

3.2.1 Tracking

The tracking thread localizes the camera pose with every frame and selects
when to insert a new keyframe. First, an initial feature matching with the
previous frame is done. Then, the pose is optimized using motion-only
bundle adjustment techniques.

This thread also handles tracking reinitialization, in case tracking is lost
(eg. due to abrupt movement ). This is done using the place recognition
module which performs a global relocalization.

At a high level, the following are the operations that occur to perform pose
estimation

• Extract FAST corners at eight-scale levels

• Divide each scale level in a grid to obtain at least 5 corners per cell

• Detect corners in each cell, adjusting threshold to find at least 5 cor-
ners

• Compute orientation and ORB descriptor

• Assume a constant velocity model and check whether guide points
can be tracked

18



3.2. ORBSLAM RELATED WORK

• If not, perform wider search and optimize with the found global cor-
respondence

In case tracking is lost, the frame is converted into bag of words and the
recognition database is queried for keyframe candidates for global relocal-
ization using a PnP algorithm [13].

To insert a new keyframe, all of the following conditions must be met.

• More than 20 frames must have passed from the last global relocal-
ization.

• Local mapping is idle, or more than 20 frames have passed from last
keyframe insertion.

• Current frame tracks at least 50 points.

• Current frame tracks less than 90% points than reference keyframe

3.2.2 Mapping

This thread runs on every new keyframe.

Upon every new keyframe insertion, this thread updates the covisibility
graph, adds a new node for that keyframe and updates all shared points.
It then updates the spanning tree, linking this frame with the keyframe
that has the most points in common. Finally, it computes bag of words
representation for each keyframe.

In order for a point to be retained in the map it must fulfill two conditions
within the next three keyframes. This is so as to avoid spurious noise sig-
nals from becoming part of the map and ensure that they are trackable and
not wrongly triangulated.

1. The tracking must find the point in more than the 25% of the frames
in which it is predicted to be visible.

2. If more than one keyframe have passed from map point creation, it
must be observed from at least three keyframes.

By triangulating ORBs from connected keyframes in the covisibility graph
new map points are created.

19



3.2. ORBSLAM RELATED WORK

This thread also tries to detect redundant keyframes and delete them . All
keyframes whose 90% of the map points have been seen in at least other
three keyframes in the same or finer scale are deleted.

3.2.3 Loop Closing

The loop closing thread takes the last processed keyframe and tries to de-
termine whether loop closure has occurred. This is done by calculating a
similarity transformation between ORB in the map points of the current
keyframe and the loop candidate keyframes. If loop closure has been dis-
covered, then duplicated map points are fused and new edges are inserted
in the covisibility graph that will attach the loop closure.
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Chapter 4

Implementation

This section pertains to the of the overall architecture, design and imple-
mentation of SLAM on a low-cost computing platform. Each portion was
carefully chosen to serve specific needs of the system, attempting to maxi-
mize performance and efficiency.

4.1 Design Decisions

4.1.1 Communication Protocol

The overall design is based on a distributed system, in which the robot
(slave) is proposed to acquire data while the computation is performed on
the server (master). Possible and appropriate communication between the
robot and server would be either via Bluetooth or Wi-Fi. Weighing the cons
and pros of each, we concluded using Wi-Fi was best suited for the project.
Wi-Fi provided access to a larger distance, allowing the user to remotely
communicate with robot and server. The tradeoff here was the power uti-
lization which was outweighed by the range achieved on using Wi-Fi. Wi-
Fi also provided a greater bandwidth for communication which was key in
sending images across the robot and server. Adhering to a low cost plat-
form, the price of Wi-Fi and Bluetooth modules for the Raspberry Pi 2 were
almost the same. Hence, in almost every aspect Wi-Fi better suited the
project.
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4.1. DESIGN DECISIONS IMPLEMENTATION

4.1.2 Components

Inertial Measurement Unit (IMU)

The IMU served to debug and test the initial architecture of the robot. Based
off various reviews and surveys on the possible accuracy achievable, the
project uses Invensense MPU 9250. This IMU served as a 9 axis accelerom-
eter, gyroscope and magnetometer.

Range Finder

Popular SLAM techniques generally involve using a laser range finder for
computation and generating a map. A basic laser range finder would cost
approximately $200. However, the cost of a laser range finder of moder-
ately decent accuracy (required for the project) cost over $1000 and this
deviated from our cost constraints. ORB Slam, chosen for our implemen-
tation, is able to map the surroundings without the need for a range finder
(rather it works based off camera image features) and hence the range
finder was avoided.

Battery

The batteries were meant to run the servos on the Robot as well as power
the Raspberry Pi 2. Since we needed to reuse the system and constantly re-
placing the battery seemed expensive and inefficient, the batteries chosen
for the robot were rechargeable. Based off the voltage and current require-
ments as well as maintaining a rchapterly low payload on the robot, we
chose five Ni Metal Hydride batteries. Each provided 1.2V and 4200mAH
and each weighed 60.33g. Total payload of batteries accumulated to 301.65
grams.

Camera

Cameras for SLAM implementation could be single (monocular) or dual
(stereo). Our implementation uses a monocular camera which is the Rasp-
berry Pi camera module of 5 megapixel resolution. It was operated at a
frame rate of 25 frames/second and provided a resolution of 320x200.
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4.2. ARCHITECTURE IMPLEMENTATION

Motor

Motors used were parallax continuous rotation motors. They served the
necessary requirements to move the payload of the robot after careful cali-
bration and testing.

4.2 Architecture

Broadly, the architecture can be divided into the robot (Raspberry Pi 2
based) and server (Laptop) communicating via the internet. The robot, also
known as the slave in the system, is built using Raspberry Pi 2 along with
key components (nodes) such as parallax continuous rotation servos, the
Inertial Measurement Unit (IMU) MPU 9250 and the Raspberry Pi camera
module.

The Inertial Measurement Unit (IMU) was initially part of the architecture
for the implementation of SLAM. On further research, along with the IMU,
a range finder of certain accuracy was required for its implementation. As
described earlier, the range finder is quite expensive and it defeats the pur-
pose of our project which was developing a low cost platform.

This inspired further research on SLAM and Visual SLAM was selected as
best suited our need. Visual SLAM used visual images acquired to com-
pute the map based off the difference of features in frames. Specifically,
a visual SLAM algorithm known as ORB-SLAM 2,[12] developed by Raul
Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez was
used.

The Raspberry Pi 2 is running Linux Kernel 4.1.6 of the Raspbian Wheezy

distribution. Although a newer release Jessie was available, the stability
of the Wheezy release was deemed vital. Hence, Wheezy was choosen to be
the kernel version.On top of this kernel, the Robot Operating System (ROS)
wrapper is placed for communication. The ROS compiled over the Rasp-
bian Kernel is ROS Indigo Igloo - Common. This compilation was intensive
and over 120 packages were installed. Several challenges of missing files,
dependencies and deprecations had to be resolved.
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4.2. ARCHITECTURE IMPLEMENTATION

Figure 4.1: System Architecture
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4.2. ARCHITECTURE IMPLEMENTATION

Various components are interfaced with the Raspberry Pi 2 using drivers
and libraries. The Servo motors are interfaced using a custom built driver,
the IMU library is courtesy RTIMULib using i2c for communication and fi-
nally the camera module is interfaced using V4L driver. The custom built
driver for the servos operated such that, the user could remotely specify
the direction (forward, reverse, left or right) for a time step of 250 ms. The
motors were run on half the maximum speed to accurately map the envi-
ronment.

Over the Linux Kernel, the Robot Operating System is used to establish a
server-node system. The mobile robot being the node is used for acquiring
the images necessary for computation on the server end.

The Robot Operating System basically involves utilization of nodes. These
ROS-nodes are established for communication across different Robot Oper-
ating Systems. This architecture involves three nodes on the slave end, each
being for the servo motors, the Inertial Measurement Unit and the camera.
Each ROS-node publishes messages to a particular topic. For instance, the
Raspberry Pi camera node publishes raw, uncompressed image data (mes-
sages) using a Raspberry Pi camera topic.

These nodes are tuned to communicate with the Robot Operating System
on the Master end. The Master here is the server / laptop where the Robot
Operating System collects the messages published by the nodes.

Communication between the Camera node and Master node is over the
internet using Wi-Fi. Finally on the server / master end, we have an Arch-
Linux Kernel 4.4 over which the Robot Operating System (ROS) wrapper
has been compiled. Here, the ROS is Full Desktop version of ROS Indigo
Turtle, which involved intensive compilation. The ROS here is used for
communication and collection of the messages published by the nodes on
the slave / robot end.

The key data received is the raw (uncompressed) image data acquired from
the Raspberry Pi Camera module. This in turn is used for computation in
mapping the environment, that is, implementation of SLAM.
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4.3. SIMULATION RESULTS IMPLEMENTATION

As mentioned previously, we have implemented ORB-SLAM 2 (a version
of Visual SLAM) on the server / master end. ORB SLAM include several
details such as Pangolin, Discrete Bag of Words (DBoW2), g2o, OpenCV,
Eigen 3, C++11. In brief, Pangolin is used for OpenGL to visualize and
generate a user interface. DBoW2 is used for image classification, it con-
verts images in terms of bag of words representation to provide a visual
vocabulary. This vocabulary file had over a million lines of data. DBoW2
is used for in-place recognition while g2o is used for optimization of non-
linear functions. OpenCL is used for acceleration and OpenCV is used for
feature and image manipulations. Eigen 3 is used for matrix computations
that are involved in g2o.

ROS and ORB-SLAM 2 provided us the desired distributed system at a
low cost with a server-node approach. This enables room for expansion by
adding new nodes and pchapter more slaves to map a region quicker.

4.3 Simulation Results

Initial debugging and testing was performed using the Inertial Measure-
ment Unit (IMU) MPU 9250 on the Raspberry Pi 2. This was interfaced us-
ing the driver provided by RTIMULib. The GUI for this is shown in Fig.4.2,
this is after the calibration of the accelerometer.

4.4 Hardware Implementation

A simple and rugged structure for the robot was required. The complete
robot is shown in Fig. 4.3 and the various components are listed below.

Chassis

The chassis of the robot is courtesy of Prof. Carl Poitras’s (Cornell ECE)
course which is 3D printed model. This served as the base for mounting
the Raspberry Pi 2, the camera module and the Inertial Measurement Unit
(IMU).
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Figure 4.2: IMU initial test

Figure 4.3: Robot Hardware
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Battery

The four Nickel Metal Hydride batteries are placed below the chassis using
velcro and electrical tape to pad them all together.

Motor

The two parallax continuous rotation motors are attached to the wheels at
the bottom below the chassis.

Sensor

Camera Module was module on top and the IMU was placed at the center
tip of the robot. Both are placed as accurately parallel to the ground.

4.5 Software Implementation

The system has a complex, multi-levelled software implementation. The
following sub-sections will list different components of the same.

4.5.1 Node Setup

The Node setup comprises of the software on the Raspberry Pi.

Core System

The core linux system of the Raspberry Pi is based on the Raspbian Wheezy

Kernel. Detailed instructions to build this can be found at https://www.
raspberrypi.org/downloads/raspbian/

ROS Installation on Raspbian

The basic bootstrap dependencies for installing
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4.5. SOFTWARE IMPLEMENTATION IMPLEMENTATION

1 $ sudo apt-get install python-pip python-setuptools

python-yaml python-argparse python-distribute

python-docutils python-dateutil python-six

↪→

↪→

2 $ sudo pip install rosdep rosinstall_generator wstool

rosinstall↪→

The rosdep tool is a ROS program that allows the user to install all the
dependencies for different packages.

1 $ sudo rosdep init

2 $ rosdep update

ROS Dependencies

In order to build the catkin packages for ROS, a Catkin workspace needs
to be initialized and built. Then using wstool the particular variant of ROS
packages can be downloaded to the src directory. The list of files is stored
in the indigo-ros comm-wet.rosinstall file. The tool can then be pro-
grammed to download the required packages. [14]

1 $ mkdir ~/ros_catkin_ws

2 $ cd ~/ros_catkin_ws

3 $ rosinstall_generator ros_comm --rosdistro indigo --deps

--wet-only --exclude roslisp --tar >

indigo-ros_comm-wet.rosinstall

↪→

↪→

4 $ wstool init src indigo-ros_comm-wet.rosinstall

Certain dependencies are not available in the Raspbian platform. These
packages need to be compiled manually.

The system needs to have gcc version 4.7+. libconsole-bridge-dev can
be installed with the following commands.
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1 $ cd ~/ros_catkin_ws/external_src

2 $ sudo apt-get build-dep console-bridge

3 $ apt-get source -b console-bridge

4 $ sudo dpkg -i libconsole-bridge0.2*.deb

libconsole-bridge-dev_*.deb↪→

liblz4-dev can be installed with the following commands.

1 $ cd ~/ros_catkin_ws/external_src

2 $ apt-get source -b lz4

3 $ sudo dpkg -i liblz4-*.deb

With the dependencies installed the actual ROS packages can now be in-
stalled. Begin by getting the various dependencies.

1 $ cd ~/ros_catkin_ws

2 $ rosdep install --from-paths src --ignore-src --rosdistro

indigo -y -r --os=debian:wheezy↪→

A 8 GB SD card was used as the main non-volatile memory in the Rasp-
berry Pi. This by default does not have a swap space enabled to conserve
disk usage. The ROS package compilation will fail in such a scenario with
an ”internal compiler error” because the Pi does not have enough memory.
A fix for this is to add swap space on a USB pendrive that is connected to
the Pi.

To manage swap space, Raspian uses a script dphys-swapfile. The stan-
dard location for the configuration files is at /etc/dphys-swapfile. The
file at /etc/dphys-swapfile is modified to the below.

1 CONF_SWAPSIZE=512 # Size of the Swap Space

2 CONF_SWAPFILE=/mnt/sda1/swap.file # Location, with /mnt/sda1

being a USB pendrive that we connected to the Pi↪→
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Care should be taken to always deactivate the swap space before unmount-
ing the pendrive.

1 $ sudo swapoff /mnt/sda1/swap.file

Now, the ROS package compilation can be run.

1 $ sudo ./src/catkin/bin/catkin_make_isolated --install

-DCMAKE_BUILD_TYPE=Release --install-space /opt/ros/indigo↪→

ROS will be installed in the system. In order to use ROS, the setup.bash

file needs to be sourced. This can be added to the /.bashrc file so that it
automatically gets sourced every time the bash shell is started.

1 $ echo "source /opt/ros/indigo/setup.bash" >> ~/.bashrc

2 $ source ~/.bashrc

4.5.2 Server Setup

The Server setup comprises of the software on the Linux Server.

Install arch linux base package

Begin by installing the base system of Arch Linux. The following link of-
fers a good set of instructions https://wiki.archlinux.org/index.php/
Installation_guide . The project was tested on a kernel of 4.5.4-1-ARCH
#1 SMP PREEMPT. A good desktop environment, like GNOME is recom-
mended.

A tool to utilize the Arch Build System like pacaur https://github.com/
rmarquis/pacaur is required. The Arch Build System (ABS) is a ports-like
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4.5. SOFTWARE IMPLEMENTATION IMPLEMENTATION

system for building and packaging software from source code. While pac-
man is the specialized Arch tool for binary package management (includ-
ing packages built with the ABS), ABS is a collection of tools for compiling
source into installable .pkg.tar.xz packages.

Install Pangolin Dependencies

The following are vital pangolin dependencies that need to be installed.

FFMPEG

FFMPEG is required for video decoding and image rescaling. Install by
(arch/ABS) pacaur -S ffmpeg

libuvc

LibUVC is required for cross-platform webcam video input
(arch/ABS) pacaur -S libuvc

Image Libraries

The following image libraries, viz. libjpeg, libpng, libtiff, libopenexr are
required for reading still-image sequences.
(arch/ABS) pacaur -S libjpeg libpng12 libtiff5 libopenexr

Install Pangolin

Now that all the dependencies have been installed proceed to install Pan-
golin.
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1 $ git clone https://github.com/stevenlovegrove/Pangolin.git

2 $ cd Pangolin

3 $ mkdir build

4 $ cd build

5 $ cmake -DCPP11_NO_BOOST=1 ..

6 $ make -j

As a norm, going ahead, a detailed explanation for each of the fixes imple-
mented is provided. These will be explained in the comments.

1 $ vim Pangolin/include/pangolin/video/drivers/ffmpeg.h

2 // add "#define PixelFormat AVPixelFormat" after AVCodec

includes↪→

3 $ vim Pangolin/src/pangolin/video/drivers/ffmpeg.cpp

4 // replace all "PIX_FMT_*" strings to "AV_PIX_FMT_*"

Install OpenCV2

OpenCV needs to be installed in a particular order. The authors strongly
feel that this probably due to the hard-coded links towards OpenCV 2.4 in
ROS Indigo Turtle. So, an ideal base install would be OpenCV2 but the arch
system due to the fact it uses a rolling update mechanism has already mi-
grated towards OpenCV 3. However, we can utilize the Arch Build System
[ABS] to install the required packages in the right order
Begin by installing OpenCL. OpenCL is an implementation to install paral-
lel programming using the GPU. Based on the GPU installed select among
the right headers for OpenCL. For an integrated Intel HD Graphics card,
use

(arch/ABS) $ pacaur -S intel-opencl-runtime intel-opencl-sdk

Then install OpenCV

(arch/ABS) $ pacaur -S opencv2
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Once, the main OpenCV is installed, you will now have to compile the ROS
OpenCV modules manually to ensure OpenCL headers are rightly linked
in the OpenCV libraries. This will be done during the install of ROS.

Install Eigen, BLAS and LAPACK

Also required are libraries for Eigen (Matrix Manipulation) and BLAS LA-
PACK algorithms.

(arch/ABS) $ pacaur -S eigen blas lapack

Install ROS Desktop

Robot Operating System is a set of open source software libraries and tools
that help you build robot applications provided by Willow Garage. In our
particular implementation, we used ROS Indigo Turtle.

(arch/ABS) pacaur -S python2-rosdep python2-rosdistro

(arch/ABS) pacaur -S python2-rosinstall-generator

(arch/ABS) pacaur -S python2-rospkg ros-build-tools ros-desktop-full

Once, that is done edit .bashrc to add the following lines.

1 # ROS

2 indigo() {

3 source /opt/ros/indigo/setup.bash

4 export

PYTHONPATH=/opt/ros/indigo/lib/python2.7/site-packages:$PYTHONPATH↪→

5 export

PKG_CONFIG_PATH="/opt/ros/indigo/lib/pkgconfig:$PKG_CONFIG_PATH"↪→

6 }

Install ROS Vision OpenCV

Now, compile and install the ROS Vision OpenCV module.
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1 # Call the function we wrote in .bashrc to source the

environment files and commands.↪→

2 $ indigo

3 $ mkdir -p ~/ros_catkin_ws/src

4 $ cd ~/ros_catkin_ws/src

5 $ catkin_init_workspace

6 $ git clone

https://github.com/ros-perception/vision_opencv.git↪→

7 $ cd ~/catkin_ws/

8 # Arch has Python3 as default, so pass the right flags to

ensure python2.7 is used↪→

9 $ catkin_make -DPYTHON_EXECUTABLE=/usr/bin/python2

-DPYTHON_INCLUDE_DIR=/usr/include/python2.7

-DPYTHON_LIBRARY=/usr/lib/libpython2.7.so

↪→

↪→

10 $ source devel/setup.bash

Install ORBSLAM2

Now, proceed ahead to the install of ORBSLAM2 algorithm.

1 $ git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2

2 $ cd ORB_SLAM2

3 $ chmod +x build.sh

4 $ ./build.sh

ORBSLAM source code has certain issues, fix them by manually editing the
files as shown below.

35



4.5. SOFTWARE IMPLEMENTATION IMPLEMENTATION

1 ORBSLAM2 has errors in usleep.

2 Inserted #include <unistd.h> in all these files.

3

4 Actual error was:

5 /home/gapo/meng/deps/ORB_SLAM2/src/LocalMapping.cc:94:28:

error: usleep was not declared in this scope↪→

6 usleep(3000);

7 /home/gapo/meng/deps/ORB_SLAM2/src/LoopClosing.cc:85:20:

error: usleep was not declared in this scope↪→

8 /home/gapo/meng/deps/ORB_SLAM2/src/System.cc:133:28: error:

usleep was not declared in this scope↪→

9 /home/gapo/meng/deps/ORB_SLAM2/src/Tracking.cc:1523:20: error:

usleep was not declared in this scope↪→

10 /home/gapo/meng/deps/ORB_SLAM2/src/Viewer.cc:159:28: error:

usleep was not declared in this scope↪→

Install ORBSLAM2 ROS NODE

Add the path including Examples/ROS/ORB SLAM2 to the ROS PACKAGE PATH
environment variable. Open .bashrc file and add at the end the following
line. Replace PATH by the folder where you cloned ORB SLAM2:

export

ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:PATH/ORB_SLAM2/Examples/ROS}↪→

# Now source .bashrc

$ source ~/.bashrc

Now, go to the Examples/ROS/ORB SLAM2 folder and execute:

1 $ mkdir build

2 $ cd build

3 $ cmake .. -DROS_BUILD_TYPE=Release

4 $ make -j
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Chapter 5

Design Verification

The basic setup involves running the roscore on the master / server end.
The Raspberry Pi Camera node is initialized and raw or uncompressed data
is published from the slave / robot end. Further, ORB-SLAM 2 is run on the
master end and a real time map is generated based off the surroundings,
post initialization.

5.1 Calibration

The calibration of the Raspberry Pi camera module is done using OpenCV
as show in fig. 5.1. This is performed using Monocular calibration by cal-
ibrating the camera against a 8x6 checkerboard of 108mm squares. The
calibration file generated is then modified to suit needs for ORB-SLAM 2
implementation.

The following file is obtained from OpenCV after the completion of calibra-
tion with over 110 readings taken.

1 [image]

2

3 width

4 320

5

6 height
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Figure 5.1: Pi Camera Calibration
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7 200

8

9 [narrow_stereo]

10

11 # Camera Matrix is of the form

12 # | fx 0 cx |

13 # | 0 fy cy |

14 # | 0 0 1 |

15

16 camera matrix

17 324.509473 0.000000 158.846334

18 0.000000 331.040207 60.245944

19 0.000000 0.000000 1.000000

20

21 # Distortion Matrix is of the form = (k1 k2 p1 p2 k3)

22

23 distortion

24 -0.083907 -0.017098 -0.060973 -0.006870 0.000000

25

26 rectification

27 1.000000 0.000000 0.000000

28 0.000000 1.000000 0.000000

29 0.000000 0.000000 1.000000

30

31 projection

32 322.097412 0.000000 156.528006 0.000000

33 0.000000 312.132385 51.607250 0.000000

34 0.000000 0.000000 1.000000 0.000000

35

36

37 (’D = ’, [-0.08390708306380001, -0.01709849449502445,

-0.06097293595759911, -0.006869946930348199, 0.0])↪→

38 (’K = ’, [324.50947291890566, 0.0, 158.84633408648983, 0.0,

331.0402072169732, 60.24594431450795, 0.0, 0.0, 1.0])↪→

39 (’R = ’, [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0])

40 (’P = ’, [322.097412109375, 0.0, 156.52800603058859, 0.0, 0.0,

312.13238525390625, 51.60724963445773, 0.0, 0.0, 0.0, 1.0,

0.0])

↪→

↪→

41 # oST version 5.0 parameters

42
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43

44 [image]

45

46 width

47 320

48

49 height

50 200

51

52 [narrow_stereo]

53

54 camera matrix

55 324.509473 0.000000 158.846334

56 0.000000 331.040207 60.245944

57 0.000000 0.000000 1.000000

58

59 distortion

60 -0.083907 -0.017098 -0.060973 -0.006870 0.000000

61

62 rectification

63 1.000000 0.000000 0.000000

64 0.000000 1.000000 0.000000

65 0.000000 0.000000 1.000000

66

67 projection

68 322.097412 0.000000 156.528006 0.000000

69 0.000000 312.132385 51.607250 0.000000

70 0.000000 0.000000 1.000000 0.000000

As mentioned in the comments above, the values from the Camera matrix

and distortion matrix are extracted. These calibration parameters are
parsed to create the calibration .yaml file for ORB SLAM.

1 %YAML:1.0

2

3 #-------------------------------------

4 # Camera Parameters.

5 #-------------------------------------

6
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7 Camera.fx: 347.055763

8 Camera.fy: 346.578125

9 Camera.cx: 149.511257

10 Camera.cy: 123.117774

11

12 Camera.k1: 0.167090

13 Camera.k2: -0.506412

14 Camera.p1: -0.008420

15 Camera.p2: -0.014372

16 Camera.k3: 0

17

18 # Camera frames per second

19 Camera.fps: 25.0

20

21 # Color order of the images (0: BGR, 1: RGB. It is ignored if

images are grayscale)↪→

22 Camera.RGB: 1

23

24 #-------------------------------------

25 # ORB Parameters

26 #-------------------------------------

27

28 # ORB Extractor: Number of features per image

29 ORBextractor.nFeatures: 1000

30

31 # ORB Extractor: Scale factor between levels in the scale

pyramid↪→

32 ORBextractor.scaleFactor: 1.2

33

34 # ORB Extractor: Number of levels in the scale pyramid

35 ORBextractor.nLevels: 8

36

37 # ORB Extractor: Fast threshold

38 # Image is divided in a grid. At each cell FAST are extracted

imposing a minimum response.↪→

39 # Firstly we impose iniThFAST. If no corners are detected we

impose a lower value minThFAST↪→

40 # You can lower these values if your images have low

contrast↪→

41 ORBextractor.iniThFAST: 20
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42 ORBextractor.minThFAST: 7

43

44 #--------------------------------------

45 # Viewer Parameters

46 #--------------------------------------

47 Viewer.KeyFrameSize: 0.05 # 0.05

48 Viewer.KeyFrameLineWidth: 1

49 Viewer.GraphLineWidth: 0.9

50 Viewer.PointSize: 2

51 Viewer.CameraSize: 0.08 # 0.08

52 Viewer.CameraLineWidth: 3

53 Viewer.ViewpointX: 0

54 Viewer.ViewpointY: -0.7

55 Viewer.ViewpointZ: -1.8

56 Viewer.ViewpointF: 500

5.2 Experimental Trials

5.2.1 Trial 1

Fig. 5.2 depicts the initial run of ORB-SLAM. The system examines for suf-
ficient features for tracking in the environment in order to initialize. When
the necessary threshold of features detected is achieved, it completes the
initialization.

5.2.2 Trial 2

Post initialization, the keyframes are generated (in blue) and the green line
depicts the path traversed. The green-colored rectangle shows the current
position of the robot. The red dots denote the points in the surrounding
that have not yet been correlated. All mapping takes place in real time
across the master and slave. Currently it is operating in SLAM Mode.
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Figure 5.2: Trial 1 : Results

Figure 5.3: Trial 2 : Results
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Figure 5.4: Trial 3 : Results - Part 1

Figure 5.5: Trial 3 : Results - Part 2
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Figure 5.6: Trial 4 : Results

5.2.3 Trial 3

Fig. 5.4 and Fig. 5.5 show the robot losing track of the map while travers-
ing and re-establishing the track. On retracing to a familiar region already
successfully mapped, the system is able to reinitialize its position correctly
based off the features mapped earlier. This shows application in the real
world where there are constant changes and reinitialization is key.

5.2.4 Trial 4

Until Trial 4, the mode of operation of ORB-SLAM 2 was SLAM mode
which was used in mapping the environment surrounding. Shown in Fig.
5.6 is on operation of Localization Mode where based off the surroundings
already mapped, it recognizes its location.

5.2.5 Trial 5

The loop closure feature of the SLAM implementation was verified and is
shown in Fig. 5.7
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Figure 5.7: Trial 5 : Loop Closure
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5.3 Bill Of Materials (BoM)

Adhering to the aim of building a low cost platform, the final cost for the
system is approximately around $100. The price split up is shown below.

Item Cost

Raspberry Pi 2 & Accessories $ 40
Wi-Fi Dongle $ 10
Robot Body $ 25
Raspberry Pi Camera $ 24
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Chapter 6

Conclusion

The system was successfully built. It worked to our expectations. The sys-
tem transmitted monocular images at frame rate of 25 fps at 320x200 reso-
lution and the trajectory was tracked in the server successfully.

The performance was as expected in scenarios where the environment had
a lot of different types of object or textures. In scenarios with very similar or
same texture, the system was not able to detect ORBs and failed to initialize.
This was an expected result. As real world generally has a lot of objects and
varied texture, this should not prove to be a problem.
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Appendix A

Code Listing

Due to the high volume of code involved in the project, the code is hosted
online at the following location :

https://github.com/gapo/SLAMberry
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Appendix B

User Manual

Get IP by :

1 $ ip addr show

Now set Master IP in ROS Slave by editing the .bashrc file and setting
the IP obtained from this step to the value in ROS MASTER URI. Now run
ROS CAMERA Node on Pi:

1 $ rosrun rosberrypi_cam rosberrypi_cam_node

After running roscore and starting the camera node,

1 $ rosrun ORB_SLAM2 Mono

~/meng/deps/ORB_SLAM2/Vocabulary/ORBvoc.txt

~/meng/deps/ORB_SLAM2/pi_cam.yaml

↪→

↪→
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Appendix C

Camera Calibration

To calibrate the camera, after running roscore and starting the camera node
by

1 $ rosrun camera_calibration cameracalibrator.py --size 8x6

--square 0.108 image:=/rosberrypi_cam/image_raw

camera:=/rosberrypi_cam

↪→

↪→
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References

D.1 Hardware

1. Raspberry Pi Hardware : https://www.raspberrypi.org/documentation/
hardware/raspberrypi/README.md

2. General Purpose Input/Output pins on the Raspberry Pi : https://
www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/

README.md

3. CortexTM-A7 MPCoreTMTechnical Reference Manual : http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.ddi0464f/index.html

4. Raspberry Pi Camera : https://www.raspberrypi.org/documentation/
hardware/camera/README.md

5. Invensense 9250 IMU : http://43zrtwysvxb2gf29r5o0athu.wpengine.
netdna-cdn.com/wp-content/uploads/2015/02/MPU-9250-Datasheet.

pdf

6. Parallax Continous Rotation Servo : https://

www.parallax.com/sites/default/files/downloads/

900-00008-Continuous-Rotation-Servo-Documentation-v2.

2.pdf
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https://www.parallax.com/sites/default/files/downloads/900-00008-Continuous-Rotation-Servo-Documentation-v2.2.pdf
https://www.parallax.com/sites/default/files/downloads/900-00008-Continuous-Rotation-Servo-Documentation-v2.2.pdf
https://www.parallax.com/sites/default/files/downloads/900-00008-Continuous-Rotation-Servo-Documentation-v2.2.pdf
https://www.parallax.com/sites/default/files/downloads/900-00008-Continuous-Rotation-Servo-Documentation-v2.2.pdf


D.2. SOFTWARE REFERENCES

D.2 Software

1. ORB SLAM2 : https://github.com/raulmur/ORB_SLAM2

2. Pangolin : https://github.com/stevenlovegrove/Pangolin

3. DBow2 : https://github.com/dorian3d/DBoW2

4. g20 : https://github.com/RainerKuemmerle/g2o

5. Eigen : http://eigen.tuxfamily.org/index.php?title=Main_Page

6. ROS : http://www.ros.org/
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[11] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics, vol. 28,
pp. 1188–1197, October 2012.

[12] R. Mur-Artal, J. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” Robotics, IEEE Transactions on,
vol. 31, no. 5, pp. 1147–1163, 2015.

[13] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, pp. 155–166, 2009.

[14] W. Garage, “Ros raspberry pi installataion instructions,” 2016.

55


	Introduction
	Design Problem
	Simultaneous Localization and Mapping Problem
	Problem Statement

	Related Work
	Feature Descriptors and Detectors
	Harris Corner Detector
	SIFT
	SURF
	BRIEF
	FAST
	ORB
	Keyframes
	Bundle Adjustment
	Bag of Words

	ORBSLAM
	Tracking
	Mapping
	Loop Closing


	Implementation
	Design Decisions
	Communication Protocol
	Components

	Architecture
	Simulation Results
	Hardware Implementation
	Software Implementation
	Node Setup
	Server Setup


	Design Verification
	Calibration
	Experimental Trials
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5

	Bill Of Materials (BoM)

	Conclusion
	Code Listing
	User Manual
	Camera Calibration
	References
	Hardware
	Software


